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Abstract
The present work is based on Bordag M et al 2005 (J. Phys. A: Math. Gen.
38 11027) where the spectral analysis of the electromagnetic field on the
background of an infinitely thin flat plasma layer is carried out. The solutions to
Maxwell equations with the appropriate matching conditions at the plasma layer
are derived and the spectrum of electromagnetic oscillations is determined. The
spectral zeta function and the integrated heat kernel are constructed for different
branches of the spectrum in an explicit form. The asymptotic expansion of the
integrated heat kernel at small values of the evolution parameter is derived.
The local heat kernels are considered also.

PACS numbers: 11.10.Gh, 42.59.Pq, 04.62.+v, 11.10.−z, 02.40.−k

1. Introduction

Recently Barton has studied [2] infinitesimally thin two-dimensional plasma layers with flat
and spherical geometry roughly reproducing the single base plane from graphite and the giant
carbon molecule C60.

The model of the plasma layer is described by the Maxwell equations with charges and
currents distributed along the surface �:

∇ · B = 0, ∇ × E − iωB/c = 0, (1)

∇ · E = 4πδ(x − x�)σ, ∇ × B + iωE/c = 4πδ(x − x�)J/c. (2)

The time variation of all the dynamical variables is defined by a common factor e−iωt . The
surface charges and electric currents are determined by the tangential components of electric
field σ = e2n0/(mω2)∇‖ · E‖, J = ie2n0/(mω)E‖, where n0 is the equilibrium electron
density.
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To put it differently, outside the plasma layer the Maxwell equations without sources are
satisfied, whereas approaching the singular surface � the fields meet the following matching
conditions:

[E‖] = 0, [E⊥] = 2q(c/ω)2∇‖ · E‖, (3)

[B⊥] = 0, [B‖] = −iq(c/ω)n × E‖. (4)

Here q is a characteristic wave number q = 2πne2/mc2, the square brackets [F] denote
the discontinuity of the field F when crossing the surface �, and n is a unit normal to this
surface.

The present work is devoted to the spectral analysis of the plasma sheet model with the
simplest flat geometry of the plasma layer.

2. Solution to the Maxwell equations for a flat plasma sheet

Let us take the plasma layer as the coordinate plane s = (x, y), the axes z being normal to this
plane; k is a two-component wave vector parallel to the plasma sheet, and ex, ey and ez are
unit base vectors in this coordinate system.

It is convenient to express the fields in terms of electric Π′ = ez eiks�(z) and magnetic
Π′′ = ez eiks�(z) Hertz vectors each possessing one nonzero component [3]

E = ∇ × ∇ × Π′, B = −i
ω

c
∇ × Π′ (TM-modes, Bz = 0); (5)

E = i
ω

c
∇ × Π′′, B = ∇ × ∇ × Π′′ (TE-modes, Ez = 0). (6)

Then the Maxwell equations are reduced to one-dimensional equations for the scalar functions
�(z) and �(z)

−�′′(z) =
(

ω2

c2
− k2

)
�(z), −� ′′(z) =

(
ω2

c2
− k2

)
�(z),

−∞ < z < ∞, z �= 0, 0 � k2 < ∞. (7)

The matching conditions (3), (4) for the fields on � lead to the matching conditions for the
functions �(z) and �(z) at the point z = 0:

[�(0)] = −2q
( c

ω

)2
�′(0), [�′(0)] = 0, (8)

[�(0)] = 0, [� ′(0)] = 2q�(0), (9)

where the notation is introduced [F(z)] = F(z + 0) − F(z − 0).
The spectral problem for the TE-modes (7), (9) is a self-adjoint one and can be

reformulated in another way by introducing the δ-function potential [4]

−� ′′(z) + 2qδ(z)�(z) = p2�(z),
ω2

c2
= k2 + p2. (10)

The integration of this equation over z from −ε to ε gives in the limit ε → 0 the matching
conditions (9).

The spectral problem for the TM-modes bears a resemblance to the problem with the δ′

potential, however it is not the case [5]. The matching conditions for � involve the eigenvalues
of the initial three-dimensional spectral problem (1). This implies that the dynamics of TM-
modes along the z axes ‘feels’ the parallel dimensions (x, y). Obviously, the self-adjointness
condition is not satisfied here.
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It is important to note that we shall consider such functions �(z) and �(z) which either
oscillate (p2 ≡ ω2/c2 − k2 > 0) or decrease (κ2 ≡ k2 − ω2/c2 > 0) when |z| → ∞. In the
first case we are dealing with the scattering states and in the second one the solutions of the
Maxwell equations are related to the surface plasmon.

The scattering states for the TE-modes are described by the functions

�(z) = C1 eipz + C2 e−ipz, z < 0, (11)

�(z) = C3 eipz, z > 0, p > 0, p2 = ω2

c2
− k2. (12)

The matching conditions (9) give the relations between the constants Ci (i = 1, 2, 3),
which define the reflection and transmission coefficients

RT E ≡ C2

C1
= −iq

p + iq
= i sin η eiη, T T E = p

p + iq
= cos η eiη,

Here η(p) = −arctan(p/q), p > 0, stands for the TE-phase shift which determines the
scattering matrix S(p) = exp[2iη(p)].

Between the TE-modes there is no solution which decreases when |z| → ∞. Thus, the
TE-modes have the spectrum

ω2(k, p)

c2
= k2 + p2, k ∈ R2, 0 � p < ∞. (13)

Here the contribution k2 is due to the free waves propagating in directions parallel to the
plasma layer, and p2 corresponds to the one-dimensional scattering in the normal direction
with the phase shift η(p).

Proceeding in the same way one obtains the reflection and transmission coefficients for
the scattering states of the TM-modes

RT M = ipq

p2 + k2 + ipq
= −i sin µ eiµ, T T M = p2 + k2

p2 + k2 + ipq
= cos µ eiµ.

The corresponding scattering matrix S(p, k) = exp[2iµ(p, k)] is defined by the phase
shift µ(p, k) = −arctan(pq/(p2 + k2)).

The solution decreasing when |z| increases is present in the TM-spectrum as well. In this
case the function �(z) is defined by the equation

�′′(z) −
(

k2 − ω2

c2

)
�(z) = 0, k2 − ω2

c2
≡ κ2 > 0. (14)

The solution we are interested in should have the form

�(z) = C1 eκz, z < 0, �(z) = C2 e−κz, z > 0, (15)

where κ = +
√

k2 − ω2/c2 > 0. The matching conditions (8) lead to the equation for κ:
κ2 + κq − k2 = 0, the positive root of which is

κ =
√

q2

4
+ k2 − q

2
. (16)

For the respective frequency squared we derive

ω2
sp

c2
= k2 − κ2 = q

2

(√
q2 + 4k2 − q

)
� 0, k ∈ R2. (17)

Therefore, the frequency of the surface plasmon is real, and the solution obtained oscillates in
time instead of being damped.
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3. Spectral functions in a flat plasma sheet model

In this section we are going to construct the spectral functions of the model, namely, the
spectral zeta function [6] and the (integrated) heat kernel [7]

ζ(s) = Tr L−s =
∑

n

λ−s
n , K(t) = Tr(e−tL) =

∑
n

e−λnt , (18)

where L is the differential operator and λn are the eigenvalues. The auxiliary variable t,

0 � t < ∞, has the dimension (length)2. In (18) the summation over the free waves reduces
to the integration over the tangential wave vector (2π)−1

∫ ∞
0 k dk . . . . The integration over the

scattering states is carried out with the spectral density ρ(p) (the function of the phase shift
δ(p)):

ρ(p) = 1

2π i

d

dp
ln S(p) = 1

π

d

dp
δ(p). (19)

For TE- and TM-modes the phase shift is given by η(p) and µ(p), respectively.

3.1. TE-modes

For the spectral zeta function in the TE-sector of the model we get

ζ TE(s) =
∫

d2k
(2π)2

∫ ∞

0
dp(k2 + p2)−s 1

π

d

dp
η(p), η(p) = −arctan

p

q
. (20)

The integral representation (20) is defined in the semi-plane Re s > 1 and can be analytically
extended all over the complex plane s save for separate points [1]. This is achieved by
expressing the integrals in equation (20) in terms of the gamma-functions

ζ TE(s) = q2−2s

8π2

�(3/2 − s)�(s − 1/2)�(s − 1)

�(s)
= q2−2s

8π(1 − s) cos(πs)
. (21)

The integrated heat kernel for TE-modes is given by

KTE(t) = K
(d=2)
0 (t) · K(d=1)(t), (22)

where K
(d=2)
0 (t) is the free two-dimensional heat kernel for the free waves propagating in

directions parallel to the plasma layer

K
(d=2)
0 (t) =

∫ ∞

0

k dk

2π
e−k2t = 1

4πt
, (23)

and

K(d=1)(t) = 1

π

∫ ∞

0
dp e−p2t d

dp
arctan

(
− q

p

)
= 1

2
etq2

erfc(q
√

t), (24)

where erfc(q
√

t) is the probability integral [8].
The structure of divergences in quantum field theory is determined by the coefficients of

the asymptotic expansion of the heat kernel when t → +0

K(t) = (4πt)−d/2
∑

n=0,1,2,...

tn/2Bn/2 + ES, (25)

where d is the dimension of space, ES stands for the exponentially small corrections.
For the TE-modes we get from (22)–(24)

B0 = 0, B1/2 = √
π, B1 = −2q, B3/2 = √

πq2, B2 = −4

3
q3,

B5/2 =
√

π

2
q4, B3 = − 8

15
q5, B7/2 =

√
π

6
q6, . . . .

(26)
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3.2. TM-modes

In the TM-modes both the photon and the surface plasmon branches of the spectrum are
present.

With equations (19) and the TM = phase shift in we obtain the photon zeta function

ζ TM
ph (s) =

∫
d2k

(2π)2

∫ ∞

0
dp(k2 + p2)−s 1

π

d

dp
µ(p, k)

= q

2π2

∫ ∞

0
k dk

∫ ∞

0

dp

(k2 + p2)s

p2 − k2

(k2 + p2)2 + q2p2
. (27)

After several changes of the variables (see [1]) the double integral (27) is analytically extended
to the whole complex s plane except separate points. This yields

ζ TM
ph (s) = q2−2s

8π2

s�(3/2 − s)�(s − 1/2)

(s − 1)(2 − s)
= 1

8π

q2−2ss

(1 − s)(2 − s) cos πs
. (28)

The heat kernel for the photon branch of the TM-modes reads

KTM
ph (t) = q

2π2

∫ ∞

0
k dk e−k2t

∫ ∞

0
dp e−p2t p2 − k2

(k2 + p2)2 + q2p2
. (29)

For deriving the coefficients of the heat kernel expansion at small t the following representation
of the heat kernel is more convenient [8]:

KTM
ph (t) = q

2π2

∫ 1

0
dx(2x2 − 1)I (x), (30)

where

I (x) =
∫ ∞

0

r2 e−r2t

r2 + q2x2
dr = 1

2

√
π

t
− πqx

2

[
eq2x2t − 2√

π

∞∑
k=0

2k(qx
√

t)2k+1

(2k + 1)!!

]
.

Then the coefficients for the photon sector of the TM-modes are

B0 = 0, B1/2 = 0, B1 = −2

3
q, B3/2 = 0, B2 = 4

15
q3,

B5/2 = −
√

π

6
q4, B3 = 8

35
q5, B7/2 = −

√
π

12
q6.

(31)

From the definition of the spectral zeta function (18) for the surface plasmon branch of
the spectrum (17) it follows that

ζ TM
sp (s) =

∫
d2k

(2π)2

ω−2s
sp (k)

c−2s
=

(
2

q

)s ∫ ∞

0

k dk

2π

(√
q2 + 4k2 − q

)−s
. (32)

The convergence of this integral in the region k → 0 requires Re s < 1, but when k → ∞
it exists only if Re s > 2. Thus for the spectrum (17) it is impossible to construct the zeta
function by making use of the analytical continuation method, since one cannot define this
function in any finite domain of the complex plane s.

However it turns out that for this branch of the spectrum the heat kernel can be constructed
explicitly. Indeed, by making use of equations (17), (18) we obtain

KTM
sp (t) =

∫
d2k

(2π)2
exp

[
−ω2

sp(k)

c2
t

]
=

∫ ∞

0

k dk

2π
exp

[
−q

2

(√
q2 + 4k2 − q

)
t
]

= 1

2πq2t2
+

1

4πt
. (33)
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The first term in the second line of equation (33) is absent in the standard expansion (25),
and the second term yields B1/2 = 2

√
π . The rest of coefficients Bn/2 with n �= 1 equal

zero. Thus the surface plasmon with the spectrum (17) is a simple physical model that has no
spectral zeta function, but possesses the integrated heat kernel with a nonstandard asymptotic
expansion.

4. Local heat kernel

The local heat kernel for the TE-sector of the model is defined by

K(r, r′; t) =
∑

n

ϕ∗
n(r)ϕn(r′) e−λnt , Lϕn(r′) = λnϕn(r′), L = −�. (34)

It obeys the heat conduction equations with respect to the variables (r, t) and (r′, t)(
�r − ∂

∂t

)
K(r, r′; t) = 0,

(
�r′ − ∂

∂t

)
K(r, r′; t) = 0 (35)

and the initial condition K(r, r′; t) → δ(r − r′), when t → 0+.

For the heat kernel of the TE-modes it is easy to show that

K(r, r′; t) = K
(d=2)
0 (s, s′; t) · K(z, z′; t), r = (s, z), s = (x, y), (36)

where K
(d=2)
0 (s, s′; t) = (4πt)−1 exp[−(s − s′)2/4t] is the free heat kernel in the directions

parallel to the plane z = 0.
To derive the heat kernel K(z, z′; t) the integral equations are used, which naturally arise

when we seek the Green function as a heat potential of a simple or double layer [9].
Then it is convenient to consider four components of the local heat kernel K(z, z′; t)

depending on the values of its arguments: K−+(z, z
′; t), z < 0, z′ > 0; K++(z, z

′; t), z, z′ > 0;
K+−(z, z′; t), z > 0, z′ < 0; K−−(z, z′; t), z, z′ < 0.

The components of the heat kernel we represent as the heat potentials of the simple layers
[10]

K−+(z, z
′; t) =

∫ t

0
dτ K0(z, 0; t − τ)α1(τ ; z′), z < 0, (37)

K++(z, z
′; t) = K0(z, z

′; t) +
∫ t

0
dτ K0(z, 0; t − τ)α2(τ ; z′), z > 0, (38)

where α1(τ ; z′) and α2(τ ; z′) are the densities of the heat potentials to be found, and
K0(z, z

′; t) = (4πt)−1/2 exp[−(z − z′)2/4t] is the free heat potential on an infinite line.
Substituting equations (37) and (38) into the matching conditions (9) we obtain∫ t

0
dτ K0(0, 0; t − τ)(α1 − α2) = K0(0, z′; t), z′ > 0 (39)

2
∂

∂z
K0(z, z

′; t)|z=0 − 4q

∫ t

0
dτ K0(0, 0; t − τ)α1 = (α1 + α2), z′ > 0. (40)

Here we have omitted the arguments of αi = αi(τ ; z′), i = 1, 2, and have taken into account
that at the interface the derivative of each single layer potential has a jump equal to αi [9].

Applying the Laplace transform to the integral equations (39), (40) we get the Laplace
images of the densities α1 and α2 and hence the images of K−+ and K++. The inverse Laplace
transform gives the corresponding Green functions. By making use of the same technique one
can derive the components K−− and K−−.
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All the four components of the heat kernel K(z, z′; t) assume the form

K(z, z′; t) = K0(z, z
′; t) − q

2
eq(|z|+|z′ |)+q2terfc

(
q
√

t +
|z| + |z′|

2
√

t

)
,

−∞ < z, z′ < ∞, z �= 0, z′ �= 0. (41)

The representation (41) appeared in the paper [11] where the quantum field theoretical
aspects of the delta potential were considered systematically.

For the problem under consideration the heat potentials afford a more transparent method
for deriving the heat kernel.

In the TM-sector of the model the construction of the local heat kernel proves to be more
complicated. The factorization equation (36) no longer holds. To apply the technique of
integral equations [10] one has to get rid of the spectral parameter (ω(p, k)/c)2 in the right-
hand side of the first matching condition (8). From the definition of the heat kernel and the
heat conduction equation, it follows that this matching condition can be obviously rewritten
in the form [�rK(s, z = 0, r′; t)] = 2q∂zK(s, z = 0, r′; t).

An interesting spectral problem arises here when we confine ourself to the one-
dimensional problem with (ω(p)/c)2 = p2:

− d2

dz2
ϕ(z) = p2ϕ(z), −∞ < z < ∞, z �= 0, (42)

[ϕ′(z = 0)] = 0, [ϕ′′(z = 0)] = 2qϕ′(z = 0). (43)

At first sight, this spectral problem is completely different from the analogous one for the δ

potential (see equations (7), (10) and (9)). However the respective eigenfunctions ϕp(z) and
�p(z) are connected by the relation ϕ′

p(z) = �p(z). Both problems have the same positive
continuous spectrum 0 < p2 < ∞. Furthermore the respective phase shifts, and consequently
the scattering matrices, coincide. From here we infer immediately that these spectral problems
have the same integrated heat kernels defined by equation (24), while the local heat kernels
are obviously different.

5. Conclusion

The plasma sheet model investigated here proves to be very instructive from the standpoint of
spectral analysis. The spectrum of the model contains both continuous branches and bound
states (surface plasmon). It is remarkable that for the latter the spectral zeta function cannot
be constructed, at least by the standard analytic continuation method. At the same time the
integrated heat kernel is found in an explicit form for all the branches of the spectrum. On the
whole this heat kernel of the model has the asymptotic expansion of a non-canonical form.

By making use of the heat potentials the local heat kernel in the TE-sector of the model
is derived. For the heat equation on an infinite line with the δ-source a nontrivial counterpart
is found, namely, a spectral problem with point interaction that possesses the same integrated
heat kernel. However the local heat kernels in these spectral problems are different.

The spectral analysis of the same model describing the plasma layers of different geometry,
for example, circular infinite cylinder or sphere, is of interest also.
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